A Decentralized Approach for Nonlinear Prediction of Time Series Data in Sensor Networks

نویسندگان

  • Paul Honeine
  • Cédric Richard
  • José Carlos M. Bermudez
  • Jie Chen
  • Hichem Snoussi
چکیده

Wireless sensor networks rely on sensor devices deployed in an environment to support sensing and monitoring, including temperature, humidity, motion, and acoustic. Here, we propose a new approach to model physical phenomena and track their evolution by taking advantage of the recent developments of pattern recognition for nonlinear functional learning. These methods are, however, not suitable for distributed learning in sensor networks as the order of models scales linearly with the number of deployed sensors and measurements. In order to circumvent this drawback, we propose to design reduced order models by using an easy to compute sparsification criterion. We also propose a kernel-based least-mean-square algorithm for updating the model parameters using data collected by each sensor. The relevance of our approach is illustrated by two applications that consist of estimating a temperature distribution and tracking its evolution over time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonlinear Model of Economic Data Related to the German Automobile Industry

Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. But it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. Such evidence appeared in the German automobile industry as a consequence of the financial crisis in 2008/09, which influenced exchange rates and a...

متن کامل

Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model

A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...

متن کامل

Vehicle's velocity time series prediction using neural network

This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

Decentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks

In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Wireless Comm. and Networking

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010